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Exponential multiplicity of inherent structures

Frank H. Stillinger
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~Received 20 April 1998!

The mechanically stable spatial arrangements of interacting molecules~potential energy minima, ‘‘inherent
structures’’! provide a discrete fiducial basis for understanding condensed phase properties. Simple plausibility
arguments have been advanced previously suggesting that at fixed positive density the number of distinguish-
able inherent structures rises exponentially with system size. A more systematic analysis is presented here,
using lower and upper bounds, that leads to the same conclusion. Further examination reveals that the char-
acteristic exponential rise rate for inherent structure enumeration diverges as the density approaches zero, when
attractive interparticle forces are present.@S1063-651X~99!07001-4#

PACS number~s!: 05.90.1m, 61.90.1d, 64.60.My, 82.20.Wt
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I. INTRODUCTION

One of the intrinsic difficulties faced by the field of non
linear optimization is that many problems of interest pres
large numbers of ‘‘false’’ solutions. In the case of an obje
tive function requiring minimization, the global absolu
minimum may be hidden as a needle in a proverbial hays
of local nonabsolute minima, possibly requiring an exha
tive search and comparison procedure. Indeed, many fam
of problems are known for which the total number of minim
rises at least exponentially as the number of variables
creases@1#.

Under some circumstances it may be valuable to iden
and classify the entire collection of minima from the ‘‘bes
to the ‘‘worst,’’ i.e., from the absolute minimum to th
highest-lying local minimum. This is the case in condens
matter physics/materials science where the objective fu
tion in one important application is the potential energy
interaction F for the constituent particles and its minim
represent the mechanically stable arrangements of those
ticles in space~‘‘inherent structures’’! @2,3#. If the particles
involved numberN and are structureless,F would have to be
minimized over the 3N-dimensional space of particle pos
tions r1 ,...,rN . If each particle additionally possessedn in-
ternal degrees of freedom~describing orientation, vibrationa
amplitudes, or conformation!, the relevant configurationa
space over whichF would have to be minimized would hav
dimension (31n)N.

Let V(N,V) be the number ofF minima whenN particles
are confined to a volumeV of given shape. For a single
component system~all particles identical! it is useful to write

V~N,V!5N!V1~N,V!. ~1.1!

This accounts for the fact that with hard walls present e
minimum is but one ofN! equivalent minima that differ only
by permutation of identical particles.@When periodic bound-
ary conditions are imposed onV, the resulting free transla
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tion requires that theN! factor in Eq. ~1.1! be replaced by
(N21)!.# ConsequentlyV1 only enumerates geometricall
distinct minima.

It has been argued@2,3# for realistic model potentialsF
that V1 asymptotically rises exponentially with system si
N ~with N/V.0 held fixed and the shape ofV held fixed!.
More precisely, the claim has been that

lim
N→`

~N21ln V1!5a, a.0. ~1.2!

The exponential rise rate parametera is expected to be sub
stance specific and to depend on the number densityN/V.
The tentative validity of relation~1.2! rests partly on the fac
that some exactly solvable many-body models indeed exh
just that property@4,5#. However, it rests as well on a frankl
crude and intuitive~but general! argument that macroscopi
subvolumes ofV could be geometrically reordered esse
tially independently of one another and thus thatV1 would
have to be multiplicative over those subvolumes@6#. The
purpose of the present work is to supply a stronger gen
basis for the claim of exponential multiplicity of distinct in
herent structures in material systems.

Section II establishes on physical grounds a lower bou
for V1 that itself rises exponentially withN, soa in the right
member of Eq.~1.2! must be greater than zero, if it exist
Section III establishes that this right member is bound
above, using the strategy ofreductio ad absurdum. Section
IV takes up the question of enumerating inherent structu
in free space and concludes that if attractive forces
present~as is true for ‘‘real’’ material systems!, thena must
diverge to infinity asN/V goes to zero. Section V presen
several concluding remarks, including some directed to po
meric substances and to mixtures.

II. LOWER BOUND

As in the preceding Introduction, attention will focus fo
the moment on the single-component case. Realistic inte
48 ©1999 The American Physical Society
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tion potentialsF that describe such systems are continuo
and at least once differentiable away from nuclear con
ences; furthermore, they are bounded below by2BN for
someB.0 @7#. In the large system limit of interest here, th
absolute minimum ofF will correspond to some periodi
crystal structure whose details~symmetry, unit cell dimen-
sions, etc.! reflect the molecular shape and flexibility and t
balance between intermolecular attractions and repulsi
Several alternative, less stable, crystal structures may
exist for the pure substance of interest; however, only
classical ground state~the absoluteF minimum! need be
considered for establishing a lower bound to lnV1.

Place theN molecules into one of the permutational
equivalent absolute-minimum configurations. The result
elastic solid may or may not entirely fill the finite availab
system volumeV, depending on how the latter compar
with the zero-pressure, zero-temperature volume of
N-molecule crystal. In either event letV0 be the volume
actually occupied by the crystal.

Divide V0 into identical compact subvolumesv0 , of mi-
croscopic size, each containing on averagen0 molecules.
The number of such subvolumes is

V0 /v05N/n0 . ~2.1!

The intention is to choosev0 sufficiently large~though still
on the molecular scale! that a mechanically stable defec
containing rearrangement of molecules could be effecte
each subvolume, without affecting the possibility of su
rearrangement in any other subvolume. The type of cry
defect involved can vary according to the substance un
consideration. In the case of atomic substances a ne
vacancy-interstitial pair~Frenkel defect! is the natural
choice, resulting from lengthwise displacement of a sh
line of particles@8#. On the other hand, substances compo
of large flexible molecules admit defects resulting fro
single molecular reorientation or internal motion@9#.

Notice that we do not require the defects in separate s
volumes be noninteracting, but only that the interactions
sufficiently weak that the absence or presence of defect
all subvolumes be possibilities that are independent of
another. Elastic strains surrounding defects will propag
through the crystal medium causing defect-defect inter
tions, but these strain fields die off algebraically with d
tance@10#. Hence the independence assumption will plac
lower limit on v0 ~and thusn0!.

Let g be the number of distinguishable configurations t
the defective state inv0 can adopt. This might count th
different relative positions of a vacancy-interstitial pair or t
different ‘‘unnatural’’but mechanically stable reconfiguring
of a flexible molecule. In any event the number of und
turbed plus defective states considered for each subvolum
11g. On account of subvolume independence, we thus c
sider the following number of distinguishable, mechanica
stable configurations~inherent structures! for the N-particle
system:

~11g!V0 /v0[exp$@n0
21ln~11g!#N%. ~2.2!

Presumably this represents only a small subset of all dis
guishable inherent structures for theN particles in fixed finite
volumeV, so we can write
s
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exp$@n0
21ln~11g!#N%<V1 . ~2.3!

If the limit indicated earlier in Eq.~1.2! indeed exists, then
the expression~2.3! implies

0,n0
21ln~11g!<a. ~2.4!

III. UPPER BOUND

The next task is to examine the implications of the po
sible violation of the limiting behavior in Eq.~1.2! due to
greater-than-linear rise of lnV1 with N. Suppose tentatively
that the following large-N behavior~with positiveN/V fixed!
applies:

ln V1; f ~N!, ~3.1!

where

lim
N→`

@N/ f ~N!#50. ~3.2!

This could arise, for example, iff (N) were proportional to
Nq, q.1. Such behavior has significant consequences
the mean size of basins belonging to the system’s inhe
structures.

The configuration space content for a single molecu
particle can be written asVv. The first factor is attributable
to center of mass translation, while the second factor is
the integral~between bounded limits! of the n internal de-
grees of freedom. In the simple case of structureless parti
(n50), v is set to unity. The content of the multidimen
sional configuration space describing allN molecules/
particles simultaneously is (Vv)N. The mean basin conten
emerges upon dividing this content by the number of bas

~Vv!N

N!V1~N!
. ~3.3!

In order to interpret the expression~3.3! physically, it is
useful to reexpress it in terms of a mean linear displacem
l for each molecule/particle. Consequently Eq.~3.3! can al-
ternatively be written in the form (v l 3)N. The asymptotic
large-N behavior tentatively postulated forV1 then leads to
the following result forl:

l 3~N!;~V/N!exp@12 f ~N!/N#. ~3.4!

The postulated property~3.2! for f (N) forces l to vanish in
the large system limit~N→1`, positiveN/V fixed!. This is
physically unacceptable because it implies that arbitra
small displacements in virtually any direction suffice
switch the system from one inherent structure to another
particular this would render impossible phonon motions
finite amplitude in the crystalline state~no restoring forces!,
as well as kinetic arrest in nonergodic trapped glassy state~a
common occurrence for amorphous substances!. Conven-
tional experience, however, indicates thatl should remain
positive and of the order of molecular dimensions in t
large system limit. This can only happen iff (N) is linear in
N and in accord with Eq.~1.2!, specifically

f ~N!;aN. ~3.5!
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IV. DENSITY DEPENDENCE

The considerations presented in Secs. II and III force
conclusion thatV1 indeed rises exponentially withN at fixed
positive density, i.e., thata in Eq. ~1.2! is well defined. How-
ever, this leaves open the issues of howa depends on the
substance under consideration and for any given subst
how this parameter varies with density.

A particularly simple situation arises if the potential e
ergy functionF is homogeneous of degree2n, n.3. This
obtains specifically whenF is composed of purely repulsiv
inverse-power pair potentials

F~r1 ,...rN!5(
i , j

~s/r i j !
n. ~4.1!

In this circumstance any inherent structure~local F mini-
mum! at system volume V, with particle locations
r1q ,...,rNq , transforms precisely to a corresponding inher
structure at volumeV8, with scaled particle locations
(V8/V)1/3r1q ,...,(V8/V)1/3rNq . Consequently,a is density
independent for this special case, though it may depend
exponentn.

The wider circumstance whereF is not homogeneous evi
dently can lead to density dependence for the expone
rise rate parametera. The exactly solvable one-dimension
model investigated by Ha¨ner and Schilling@5# possesses a
a that declines monotonically with increasing pressure, i
with increasing density. Furthermore, Malandro and La
@11# have numerically investigated a Lennard-Jones-l
three-dimensional model, establishing at least over a lim
density range in finite systems thatV1 decreases with in-
creasing density. Heuer has obtained similar results for
same model@12#. It should also be mentioned that analyt
properties of the pairwise additive Gaussian core model
require that itsV1 decrease with increasing density@13#.
While the present understanding cannot exclude the poss
ity that a might increase with density over a limited dens
range for some model potential, this would seem to be
ceptional behavior.

The tendency forV1 , and thusa, to increase as densit
declines when attractive interparticle forces are pres
seems to have a straightforward explanation. Attracti
have been observed in simulations to stabilize porous in
ent structures in which the void space can adopt a wide
riety of convoluted and multiconnected shapes@14,15#. Fur-
thermore, the real substances Kr and N2 can experimentally
be prepared in analogous states as mesoporous solids@16#
and the very low-density aerogels composed of SiO2 provide
a particularly dramatic related example@17#. The presence o
substantial open space in these structures offers many op
tunities for reconfiguring the particles into alternative m
chanically stable arrangements, far exceeding in num
those available at high density where particles interfere
verely.

To strengthen this argument it is useful to consider
formation of inherent structures forN particles in free space
i.e., V→1`. The very open and multiply branched stru
tures produced by diffusion-limited aggregation proces
@18# suggest that similar forms might be expected for fre
space inherent structures. This in turn invalidates the b
e

ce

t

on

ial

.,
s
e
d

e

o

il-

x-

nt
s
r-

a-

or-
-
er
e-

e

s
-
is

on which the exponential rise rate ofV1 with N @Eq. ~1.2!#
has been established for fixed positive density.

An elementary, approximate, enumeration scheme for
herent structures in free space implies thatV1 rises more
rapidly than as a simple exponential. Suppose in fact that
‘‘typical’’ free-space inherent structure is indeed very ope
Imagine constructing such arrangements particle by part
from an initial seed. At any intermediate stage, the num
of distinct sites at which the next particle could be attach
to the incomplete cluster would be roughly proportional
N8, the number already in place. Therefore, we haveK
.0)

V1~N811!>KN8V1~N8!. ~4.2!

Taking logarithms and treating the large variableN8 as con-
tinuous, we have

d ln V1~N8!/dN8> ln~KN8!. ~4.3!

This can be integrated to yield

ln V1~N!>N ln N1~ ln K21!N1C, ~4.4!

whereC is an integration constant. Clearly this result cont
dicts the positive density presumption embodied in Eq.~1.2!
and suggests a faster-than-exponential rise rate with incr
ing N.

A more insightful enumeration scheme than the crude
just presented might reveal that as particles are added
previously emplaced ‘‘substrate’’ might not simply serve
a nearly rigid host, but be capable of new and distinct sta
arrangements that could not exist without the additional p
ticle. If such possibilities are present and sufficiently num
ous, the estimate~4.4! above might actually be a significan
underestimate. That could conceivably lead to the form~3.1!
shown earlier withf (N) proportional toNq, q.1. However,
without having to settle these technical details, we can sa
conclude that for any three-dimensional model substa
possessing attractive interparticle interactions, the param
a must diverge to infinity as the density goes to zero.

V. DISCUSSION

The lower bound fora provided by Eq.~2.4! may prove
to be very weak in many applications. In order to satisfy t
defect-independence assumption on which that resul
based,n0 would probably have to be of order 102; assigning
the value 6 tog then might be reasonable@19#. Conse-
quently, Eq.~2.4! would state

~ ln 7!/10050.019 459 1 . . .<a. ~5.1!

By contrast, Wallace@20# estimates that

a>0.8 ~5.2!

for a wide range of monatomic substances. Flexible orga
molecules such as the fragile glass former ortho-terphe
~OTP! appear to exhibit substantially largera values; a
simple calculation based on its measured heat capacity
heat of fusion suggests that@21#
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a~OTP!>13.14. ~5.3!

Linear polymeric substances may exhibita’s that increase
roughly linearly with the degree of polymerization~numbers
of monomer units!, at fixed overall mass density, owing t
backbone flexibility degrees of freedom. These discrepan
with Eq. ~5.1! warrant searching in the future for more pow
erful bounds fora.

The focus of the foregoing arguments has been the t
number of inherent structures, regardless of how they m
differ in detail. However, it is also important to classify in
herent structures according to one or more intensive ‘‘ord
parameters and if possible to obtain their distribution w
respect to these parameters. A particularly important c
involvesf, the potential energy per particle of the inhere
structures, because this leads to an especially simple ex
sion for the free energy of the many-particle system@3,6#.
Given the validity of Eq.~1.2! and assuming the continuit
of the asymptotic distribution with respect tof, it is inevi-
table that this distribution of distinguishable inherent stru
tures have the form@3,6#

exp@Ns~f!#, s>0. ~5.4!

Although the developments in the Secs. II–IV have be
n

es

al
y

’’

se
t
es-

-

n

restricted to single-component systems, mixtures also
serve examination. In the general case involving compone
1, . . . ,n, Eq. ~1.1! generalizes to

V~N1 ,...Nn ,V!5~PNm! !V1~N1 ,...Nn ,V!, ~5.5!

with V1 expected asymptotically to rise exponentially wi
the total number of particles~all densitiesNm /V held fixed!.
However, because the components are distinguishable
exponential rise rate quantitya should be larger than its
single-component relatives on account of mixing entropy
fects.

A concrete example serves to illustrate the last point.
a(N2) be the exponential rise rate quantity for pure molec
lar nitrogen. Carbon monoxide has a small molecular dip
moment@22# and has nearly the same molecular size as
dipole-moment-free nitrogen molecule@23#. Consequently,
CO should be able freely and stably to substitute forN2 in
any inherent structure for the latter. Taking due account
the two distinguishable orientations available for each s
stituting CO, one estimatesa for the N2-CO mixture to be

a>a~N2!1x ln 22x ln x2~12x!ln~12x!, ~5.6!

wherex is the mole fraction of CO in the mixture.
er,
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